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Abstract— Waveguide bends with small radii of cur-
vature are realized by using properly selected discon-
tinuities which, placed inside the curve, allow low re-
turn losses to be achieved over large band-widths. The
component is designed by using an efficient computer
code which employs the local modes approach to an-
alyze curved sections, while discontinuities are rig-
orously accounted for by considering their accessible
modes. Theoretical simulations are compared with ex-
perimental results showing very good accuracy.

I. INTRODUCTION

Waveguide bends are crucial for sophisticated mi-
crowave systems such as radar seekers, satellite beam
forming networks, etc. [1], [2], [3], where, in order to
minimize space requirements, it is often required to re-
alize curves with short radii, but nevertheless exhibiting
low return loss over a wide-band. Wide-band matched
(WBM) bends were first introduced by de Ronde [4] by
inserting suitable matching elements (ME) such as stubs,
notches, etc., on an experimental basis.

While a considerable amount of literature addresses the
full-wave analysis of bends [5]-[9], there is a lack of infor-
mation on the design of compact WBM bends. Moreover,
most current approaches do not coexist favourably with
possibly the commonest method used for analizing inter-
acting discontinuities. This method, in fact, is based on
the use of the Generalised Scattering Matrices (GSM),
considering all the accessible modes relative to each dis-
continuity. It would be appropriate, therefore, to charac-
terize the bend too in terms of its GSM. As an example,
numerically oriented methods, although useful for analysis
purposes, fail to provide insight on how to select suitable
ME, while their limited numerical efficiency prevents from
their use in the optimization routines necessary to design
WBM components.

In this contribution we present several new solutions to
design compact WBM bends, both in the E- and H-planes,
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Fig. 1. H-plane bend showing used coordinate systems.

which are easy to manufacture, avoiding the use of trim-
ming elements and providing a fairly robust design both
from the electrical and mechanical viewpoint. In addition,
we also introduce for the first time the combination of the
local modes concept {10} and of that of accessible modes,
that is suitable to account for the presence of discontinu-
ities and ME inside the bend. Thanks to its numerical
efficiency, this approach is an ideal candidate for CAD
purposes.

The analysis by the local modes approach is described
in the next section, while section III. illustrates the pro-
posed WBM bends; finally, in section I'V. the theoretical
simulations are compared with experimental data as well
as with other theoretical results.

11. ANALysis BY LocAL MODES

Let us consider a rectangular waveguide H-plane bend
of angle 8, as shown in a schematic top view in Fig. 1, with
incident field the fundamental T'E19 mode. This field has
no variation in the y-direction and the only fields com-
ponents are E,, H;, H,. The method of local modes de-
scribes the field in each section of the bend by means of
a superposition of modes of the locally straight waveguide.
In this way the electric field in the bend is expressed in
the following manner

Ey(z,z) = Z Vo (2)¢n () 1)
n=1
while the magnetic field is given by

Hy(z,2) = - Z L, (2)$n () (2)
n=1
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In practice, sums are truncated after few terms, say N,
since the field inside the bend is quite similar to that of
straight sections. However, while the modes in a straight
section are independent of each other, in the curved sec-
tions they couple and their propagation inside the bend
is described by the following system of equations

N

&,,Vm = —AmIm - Z anIn (3)
n=1

N
Bplm = —ComVin — > _ DiunVh

n=I1

(4)

where the coefficients A,,,, Bm, Crnn, Dmn, have the simple
closed-form expression derived hereafter.

A. Coefficients of the Telegrapher’s equation

In each section of the bend the field may be obtained
from a potential 1 solution of the Helmholtz’ equation
expressed in cylindrical coordinates, i.e. of

1 1
(6,% + ;6,,) Y+ ?a‘?’w +k%p =0 (5)
from which the transverse field components are obtained,
in cylindrical coordinates, as

Ey = jwpyp

1
Hp = cp"/) (6)
o
In order to find the actual form of the field we make use
of the expansion (1) and (2). Note that in these expan-
sions the ¢, () constitute a complete, orthonormal, basis,
but they are not the modal basis for our curved section.
In fact, the ¢, (x) are the modal function for the straight
waveguide; as such they satisfy the following wave equa-~
tion

2, + k2, = B2on (7

where 3, is the propagation constant.

With reference to Fig. 1, the relationship between the
cylindrical and the rectangular coordinate system is pro-
vided by

0, = -0
0
p=r+=x
9z =9, (8)

By substituting the expansion (1) and (2) into the equa-
tions (6) and (5) it is possible to obtain the two general-
ized telegrapher’s equation linking voltages and currents
along the bend as described in the following.

1) First generalized telegrapher’s equation: By substi-
tuting (1) and (2) into (6), noting that Hy = H,, yields

N N
Z 6¢Vn¢n = _jwll'p Z In¢n (9)
n=1 n=1

Taking advantage of the orthonormality of the basis func-
tions ¢, (9) provides the first of the generalized telegra-
pher’s equations, i.e.

N
By Vm = —jwprlm — jwp y | Hppln

n=1

(10)

where we have introduced the following coupling terms

(11)

Equation (10) clearly shows the mode coupling that takes
place in the bend. In particular, for H-plane bends the
coupling terms H,,, are given by

H,..= % foa z sin (1—”575:1;) sin (-’-’;;’lx) dz =

Hmn =< ¢m7m¢n >

£~ —W(nf+n) [cos(m+n)ymr—1 m=n
% (12)
m[cos(m—n)ﬂ—l]—
7l_2(Ta'_|_n)'g'[COS('fn—*"rL)'Tl'—].] m;én

2) Second generalized telegrapher’s equation: In order
to derive the second generalized telegrapher’s equation it
is expedient to note that, by using (8) the first term in
(5) may be written as

1

(6},’ + %a,,) = 0%+ ——— 00

(r+2z) (13)

while the second term in (5), by using (6), yelds
1 1 1
S0 =200, = =23 0, (¢)dala)  (19)
n=1

After inserting the two above equations into (5) and by
using (7), we get

>

n=1

N

ol,
wiy %% (15)

n=1

Opn .
b, N

N
2
(r +z) B2 Vyon +n2 Va?

Taking advantage of mode orthonormality, one finally ob-
tains

oI, B . al 2 f:
AP V.. — 4 TS - RSN T
Op i Wit JE wit + wit

(16)

n=1
where the following coupling integral has been introduced

Frin =< ém, G > = 22 [Fsin (%) cos (2x) do =

. 0 m=n
z { [ fomemy i1 ]<m+n>} mtn
(17)
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By rewriting (10) and (16), upon using for brevity the
quantities Am, Bmn, Cm, Dmn,

) Ap = jwpr B = jwpHay,
] 21,. ) 2
Cn :]&n__ Dy =13 (ﬁ_nHmn + @") (18)
Wit Wi wit

we get the system of equations (3, 4). This gives the dif-
ferential relationship between voltages and currents ex-
pressing the amplitude of the electric and magnetic field,
respectively, along the bend. The solution of the telegra-
pher’s equations (3, 4) is obtained in the following man-
ner.

B. Solution of the Telegrapher’s equations

By introducing an appropriate matrix [r] the gener-
alised telegrapher equations (3, 4) are rewritten in the

following way
v v
HELIME

For a bend of angle 8 and constant radius the matrix [} is
a constant, thus allowing the solution of the above system

v _ 9[,—] v
o fi]-e [,

where the subscript 0 in the r.h.s. term stand for the volt-
age and current distribution at & = 0. The matrix €®l"],
i.e. the transmission matrix of the bend, is computed by
using the formula:

{A BJ = O i @[n"

C D {
n=0,1 s

(19)

(20)

(21)

In order to overcome any numerical instability aris-
ing from the use of the transmission matrix with several
modes below cut-off, it is expedient to compute the solu-
tion for a small angle Ap = ffw and then to transform the
transmission matrix into the scattering matrix. The gen-
eralised scattering matrix of the entire bend is obtained
by calling M times the routine providing the scattering
matrix of double a given angle.

This approach, apart for being numerically efficient and
very stable, is also well suited to accounting for matching
elements inside the bend. In fact, it is easy to rigorously
analyze the effects of a discontinuity by describing the
latter in terms of its accessible modes. Note that, by
numerically solving (19), the local mode technique also
allow to consider bends with varying angle of curvature,
as well as serpentines etc.

II1. WinE-BAND MATCHED BENDS

It is convenient to distinguish between E- and H- plane
bends, since their design is fairly different.

Fig. 2. E-plane bend with equivalent circuit shown in the inset.

Fig. 3. Wide-band matched E-plane bend, by using a stub as series
inductance. The resulting equivalent circuit is shown in the inset.

A. E-plane WBM bend

It was suggested in [4] to match an E-plane bend by
means of an E-plane stub. The matching mechanism is
readily understood by considering that an E-plane bend
behaves as a series negative inductor [5], see Fig. 2. Thus
by adding in series to this a positive inductance, as shown
in the inset of Fig. 3, we realize an element with the fol-
lowing ABCD matrix:

{1 X' - X )J

0 1 (22)

It is apparent that, by proper selecting the frequency de-
pendence of the X’ one can compensate the frequency de-
pendence of X over a fairly large bandwidth. A suitable
ME to this end is a short (inductive) E-plane stub, such as
depicted in Fig. 3, which allows to realize E-plane matched
bends over the whole X-band (8.2 — 12.4 GHz).

B. H-plane WBM bend

The H-plane bend corresponds to a parallel inductor [5]
and is slightly more difficult to match, two solutions being
feasible. Omne design compensates the bend by using an
E-plane folded stub [3], that is a series capacitance, which
allows to obtain the desired overall frequency-dependent
reactance. The other approach compensates the parallel
inductance of the H-plane bend by using a shunt capac-
itance as shown in the inset of Fig. 4. The latter de-
sign, although mechanically simpler, offers fewer degrees
of freedom in achieving the sought frequency-dependent
reactance.

IV. EXPERIMENTAL AND NUMERICAL RESULTS

A FORTRAN computer code, based on the local modes
approach, has been developed and tested against pub-
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Fig. 4. A matched H-plane bend in rectangular waveguide. An E-
plane step, corresponding to a shunt capacitance, is placed before
the bend, which corresponds to a parallel inductance
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Fig. 5. Return loss of a circular 90° H-plane bend in rectangular
waveguide (guide width a = 1905 mm, guide height b = 9.530
mm, mean radius is R = 15.6 mm). Continuous curve refers to our
numerical simulation, crosses refer to the numerical simulation of
[11]; circles are experimental data.

lished data of an unmatched bend. In Fig. 5, 6 we re-
port the comparison of our simulations (continuous line)
with the theoretical data of [11] (crosses) relative to the
method presented in [8]. In Fig. 5 theoretical results have
been compared with measured data showing an excellent
agreement. From extensive numerical tests it has been
found that it is normally sufficient to consider the cou-
pling between 4- 5 modes to obtain quite accurate results.
In this case, the computation takes few seconds for each
frequency point on a PC.

From Fig. 6 it is noted that at the frequency of 12.5
GHz, for a bend of 120° and for a radius of 10 mm, we
have a very low reflection coefficient. The knowledge of
this angle is important since it allows designing the lay-
out of rather complicated beam-forming networks without
return losses due to bends. However, this circumstance
is useless when the curve must be of a given angle; in
addition, wherever a larger bandwidth is required, it is
necessary to employ ME and the design described in the
previous section.

V. CONCLUSIONS

Wide-band matched (WBM) waveguide bends with
small radius of curvature have been realized by placing
matching elements (ME) inside the curve. The design of
WBM E-plane bend has been accomplished by using an
E- plane stub at the beginning of the curve as ME. For
the H-plane bend two different solutions have been pro-
posed. The matched bend is designed by using an efficient
computer code based on the local modes approach. Theo-
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Fig. 6. Return loss of a circular H-plane bend in rectangular waveg-
uide (guide width a = 19.05 mm, guide height b = 9.53 mm). The
mean radius is R = 10 mm, and the bend angles are indicated in
the graph. The continuous curves refer to our numerical simulation,
while crosses refer to the numerical simulation of [11].

retical simulations have been compared with experimental
results showing very good accuracy.
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